Host-Microbe Interactions

HMI Group: Host-Microbe Interactions in Health, Disease and Environment

 
Members of the Host-Microbial Interactions (HMI) Group study how “microbes” (viruses, bacteria, fungi, and protozoan parasites) sustain themselves within hosts at molecular, cellular, organismal, and population levels. The studies of host-microbe interactions, which fall on a continuum from parasitism to mutualism, are central to our understanding of health, disease and our environment, and for development of novel drugs, vaccines, therapeutics, and genetically-modified crops to prevent transmission. HMI faculty work to (1) understand various phenomena related to various host-microbe interactions, including evolution and co-evolution of the host and/or microbe during these infections, (2) apply basic biological and biochemical knowledge to situations involving human, animal, and plant diseases, and study innate and adaptive immune host responses,  (3) establish translational approaches cohesive public health or world environmental programs. Studies by HMI faculty are highly interdisciplinary integrating biologic and biochemical inquiry, genomics, public health, mathematics and statistics. Several of these faculty are members of the Bioinformatics Research Center, and several of these faculty are obtaining appointments with the School of Data Science that has interests in large data set analysis and the ethical and social obligations considerations that come with it. These align with “Big Data” initiatives on campus.
 
Upcoming Events:

coming soon

For more about Dr. Chakrabarti's lab, visit the lab website (https://pages.charlotte.edu/kchakrab/)

Research projects

  1. Elucidating developmental regulation of telomerase ribonucleoprotein enzyme in two proliferative host stages of human pathogen Trypanosoma brucei .
  2. Determining the relationship between telomerase function and antigenic variation in Trypanosoma brucei.
  3. Mechanistic analysis of the role of RNA stability and secondary structures in translational control in malaria pathogen Plasmodium falciparum.

Representative Publications

  • Alvarez DR, Ospina A, Barwell T, Zheng B, Dey A, Li C, Basu S, Shi X, Kadri S and Chakrabarti K. 2021. "The RNA structureome in the asexual blood stages of malaria pathogen Plasmodium falciparum". RNA Biology. 23:1-18.
  • Fessler AB, Dey A, Finis DS, Fowler AJ, Chakrabarti K, Ogle CA. 2020. "Innately Water-Soluble Isatoic Anhydrides with Modulated Reactivities for RNA SHAPE Analysis". Bioconjug Chem. 31(3):884-888.
  • Dey A and Chakrabarti K. 2018. "Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites". Int. J. Mol. Sci. 19(2). pii: E333.
  • Sandhu R, Sanford S, Basu S, Park M, Pandya U, Li B and Chakrabarti K. 2013. "A Trans-spliced Telomerase RNA dictates telomere synthesis in Trypanosoma brucei". Cell Research 23(4):537-51

For more about Dr. Chi's lab, visit the lab website (https://pages.charlotte.edu/richard-chi/)

Research Projects

  1. Understanding SNX-BAR protein structure and function in yeast 
  2. Understanding SNARE Expansion in the endosomal system
  3. Determining the structure and function of major intrinsic proteins
  4. Understanding how digital fabrication improves informal and formal learning approaches

Representative Publications

  • Goyal, S., Segarra, V., Nitika., Stetcher, A., Truman, A., Reitzel, A., Chi R.J. Vps501, a novel vacuolar SNXBAR protein cooperates with the SEA complex to induce autophagy. 2021 January 01;:2021.05.06.441257. Available from: http://biorxiv.org/content/early/2021/05/06/2021.05.06.441257
    .abstract DOI:10.1101/2021.05.06.441257
  • Segarra, V.A., Chi, R.J. Combining 3D-Printed Models and Open Source Molecular Modeling of p53 To Engage Students with Concepts in Cell Biology. J Microbiol Biol Educ. 2020 Dec 21;21(3):21.3.72. doi: 10.1128/jmbe.v21i3.2161. PMID: 33384761; PMCID: PMC7747883.
  • Grissom JH, Segarra V.A., Chi, R.J. New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System. Genes (Basel). 2020 Aug 6;11(8):899. doi: 10.3390/genes11080899. PMID: 32781543; PMCID: PMC7465790.
  • Ma, M., Kumar S., Purushothaman, L., Babst, M., Ungermann, C., Chi, R. J. and Burd, C. G., Lipid Trafficking by yeast Snx4 family of SNX-BAR proteins promotes autophagy and vacuole fusion. Molecular Biology of the Cell. 2018 (18):20190-2200.
  • #Ma, M., C. G. Burd* and Chi, R. J.,(2017). "Distinct complexes of yeast Snx4 family SNX-BARs mediate retrograde trafficking of Snc1 and Atg27."Traffic 18(2):134-144.

Research projects

  1. Investigate role of thrombocytes (nucleated platelets) as immune cells when exposed to various bacterial and viral products.
  2. Use a systems biology approach to examine the genome-wide transcriptome response of thrombocytes to strengthen the role of thrombocytes as immune effector cells and reveal the involvement of these cells in key inflammatory signaling pathways.
  3. Understand the effect of certain supplements on gene expression of immune cells from dairy cows.

 Representative Publications

  • Zhou Z, Ferdous F, Montagner P, Luchini DN, Corrêa MN, Loor JJ. Methionine and choline supply during the peripartal period alter polymorphonuclear leukocyte immune response and immunometabolic gene expression in Holstein cows. Journal of Dairy Science 2018;101:10374-82.
  • Ferdous F, Saski C, Bridges W, et al. Bacterial and Viral Products Affect Differential Gene Expression Profiles in Chicken Thrombocytes Evidenced Through RNA Sequencing. Journal Immunology 2017.199: 000–000. doi: 10.4049/jimmunol.1700189.
  • Winkler C, Ferdous F, Dimmick M, et al. Lipopolysaccharide Induced Interleukin-6 Production is Mediated Through Activation of ERK 1/2, p38 MAPK, MEK, and NFκB in Chicken Thrombocytes. Developmental and Comparative Immunology 2017;73:124-130. doi: http://dx.doi.org/10.1016/j.dci.2017.03.017.
  • Ferdous F, Saski C, Bridges W, et al. Transcriptome profile of the chicken thrombocyte: New implications as an advanced immune effector cell. PLOS One. 2016;11(10):e0163890.
  • Ferdous F, Scott T. Bacterial and viral induction of chicken thrombocyte inflammatory responses. Developmental and Comparative Immunology. 2015;49(2):225-230. doi: http://dx.doi.org/10.1016/j.dci.2014.11.019.

For more about the Funk lab, please visit: https://pages.charlotte.edu/kfunk/

Research Projects

The contribution of the immune system to homeostatic brain function is a growing field that is still not well understood; however, neuroinflammation is increasingly associated with neurocognitive disorders including Alzheimer’s disease (AD) and viral encephalitis. The Funk lab investigates the innate immune response of neurons and microglia in recovery from neurotropic infection, and the mechanisms by which they may contribute to aging processes in the brain and cognitive dysfunction.  Research in the Funk laboratory uses mouse models of viral encephalitis, including West Nile virus and murine hepatitis virus, to investigate:

  1. How neuroinflammation alters genetic and synaptic programs, which affect and denote aging processes, 
  2. How aging affects microglial response to inflammatory events, altering neuroinflammatory signatures, and 
  3. How neuroinflammatory events affect pathological Tau accumulation, a well-studied correlate of neurodegeneration.

Representative Publications

  • Lotz SK, Blackhurst BM, Reagin KL, and Funk KE. Microbial infections are a risk factor for neurodegenerative diseases. Front Cell Neurosci. 2021 Jul 7; 15:691136. PubMed PMID: 34305533
  • Funk KE, Arutyunov A, Desai P, White JP, Soung AL, Rosen SF, Diamond MS, Klein RS. Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis. Aging Cell. 2021; Aug;20(8) PubMed PMID: 34327802
  • Funk KE, Klein RS. CSF1R antagonism limits local restimulation of antiviral CD8+ T cells during viral encephalitis. J Neuroinflammation. 2019 Jan 31;16(1):22. PubMed Central PMCID: PMC6354430.
  • Funk KE, Mirbaha H, Jiang H, Holtzman DM, Diamond MI. Distinct Therapeutic Mechanisms of Tau Antibodies: Promoting Microglial Clearance Versus Blocking Neuronal Uptake. J Biol Chem. 2015 Aug 28;290(35):21652-62. PubMed Central PMCID: PMC4571888.
  • Funk KE, Thomas SN, Schafer KN, Cooper GL, Liao Z, Clark DJ, Yang AJ, Kuret J. Lysine methylation is an endogenous post-translational modification of tau protein in human brain and a modulator of aggregation propensity. Biochem J. 2014 Aug 15;462(1):77-88. PubMed Central PMCID: PMC4292886. 
Complete List of Published Work in My Bibliography:
http://www.ncbi.nlm.nih.gov/myncbi/kristen.funk.1/bibliography/44179457/public/?sort=date&direction=ascending

Research Projects

  1. RIG-I detection of bacterial nucleic acids in glial cells (with Brittany Johnson)
  2. Role of the neuropeptide Substance P in bone inflammation (with Ian Marriott)
  3. Reducing equity gaps in STEM education

Representative Publications

  • Crill EK, Furr-Rogers SR, Marriott I. RIG-I is required for VSV-induced cytokine production by murine glia and acts in combination with DAI to initiate responses to HSV-1. Glia. 2015 Dec;63(12):2168-80.
  • Furr SR, Marriott I. Viral CNS infections: role of glial pattern recognition receptors in neuroinflammation. Front Microbiol. 2012 Jun 20;3:201.
  • Furr SR, Chauhan VS, Moerdyk-Schauwecker MJ, Marriott I. A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells. J Neuroinflammation. 2011 Aug 12;8:99.
  • Furr SR, Moerdyk-Schauwecker M, Grdzelishvili VZ, Marriott I. RIG-I mediates nonsegmented negative-sense RNA virus-induced inflammatory immune responses of primary human astrocytes. Glia. 2010 Oct;58(13):1620-9.
  • Furr SR, Chauhan VS, Sterka D Jr, Grdzelishvili V, Marriott I. Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus. J Neurovirol. 2008 Nov;14(6):503-13.

For more about Dr. Grdzelishvili's lab, visit his website (https://pages.charlotte.edu/valery-grdzelishvili/)

Research projects

  1. Understanding molecular mechanisms determining permissiveness or resistance of cancer cells to viruses
  2. Experimental evolution of viruses and host cells
  3. Role of the cell cycle in virus-host interactions
  4. Analysis of virion-associated host proteins using proteomic approaches

Representative Publications

  • Seegers S.L., Frasier C., Greene S., Nesmelova I.V., and Grdzelishvili VZ. 2019 “Experimental Evolution Generates Novel Oncolytic Vesicular Stomatitis Viruses With Improved Replication in Virus-Resistant Pancreatic Cancer Cells”. Journal of Virology, 2020 Jan 17;94(3):e01643-19. 
  • Bressy C, Droby GN, Maldonado BD, Steuerwald N, and Grdzelishvili VZ. 2019 “Cell Cycle Arrest in G(2)/M Phase Enhances Replication of Interferon-Sensitive Cytoplasmic RNA Viruses via Inhibition of Antiviral Gene Expression”. Journal of Virology, 2019 Feb 5;93(4). 
  • Felt S.A., Droby G.N., Grdzelishvili V.Z. 2017 “Ruxolitinib and polycation combination treatment overcomes multiple mechanisms of resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus” Journal of Virology, 2017, 91(16):e00461-17.
  • Hastie E., Cataldi M., Moerdyk-Schauwecker M.J., Felt S.A., Steuerwald N., Grdzelishvili V.Z. 2016 “Novel biomarkers of resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus” Oncotarget. 2016 7(38):61601-61618.
  • Moerdyk-Schauwecker M., Hwang S. and Grdzelishvili V.Z. 2014 “Cellular proteins associated with the interior and exterior of vesicular stomatitis virus visions” PLoS One, 9(8):e104688

For more about Dr. Johnson's lab, visit her website (https://biology.charlotte.edu/directory/m-brittany-johnson-phd)

Research Projects

  1. RIG-I as a therapeutic target for bacterial CNS infection
  2. Investigation of host cell cytokine directed changes in Neisseria meningitidis gene  expression
  3. Investigation of host pathogen interactions in osteomyelitis 

Representative Publications

  • Johnson, M. B., Halman, J. R., Burmeister, A. R., Currin, S., Khisamutdinov, E. F., Afonin, K. A., Marriott, I. (2020). Retinoic acid inducible gene-I mediated detection of bacterial nucleic acids in human microglia cells. Neuroinflammation. (1):139. PMID: 32357908
  • Johnson, M. B., Halman, J. R., Miller, D. K., Cooper, J. S., Khisamutdinov, E. F., Marriott, I., Afonin, K.A. (2020). The immunorecognition, subcellular compartmentalization, and physicochemical properties of nucleic acid nanoparticles can be controlled by composition modification. Nucleic Acid Research. 48(20): 11785-11798. PMID: 33091133
  • Johnson, M. B., Halman, J. R., Satterwhite, E., Zakharov, A. V., Bui, M. N., Benkato, K., Goldsworthy, V., Kim, T., Hong, E., Dobrovolskaia, M. A., Khisamutdinov, E. F., Marriott, I., Afonin, K. A. (2017). Programmable nucleic acid-based polygons with controlled neuroimmunomodulatory properties for predictive QSAR modeling. Small. 13. PMID: 28922553
  • Johnson, M. B., Ball, L. M., Daily, K. P., Martin, J.N., Columbus, L., and Criss, A. K. (2015). Opa+ Neisseria gonorrhoeae exhibits reduced survival in human neutrophils via Src family kinase-mediated bacterial trafficking into mature phagolysosomes. Cell Microbiol17:648-65. PMID: 25346239.
  • Johnson, M. B., and Criss, A. K. (2013). Neisseria gonorrhoeae phagosomes delay fusion with primary granules to enhance bacterial survival inside human neutrophils. Cellular Microbiology. 8:1323-1340. PMID: 23374609

For more about Dr. Lo's lab, visit her website (https://pages.charlotte.edu/elo/)

Research projects

  1. Molecular epidemiology of malaria in Sub-Saharan Africa
  2. Population and functional genomics of malaria parasites
  3. Invasion mechanisms by malaria parasites
  4. Landscape genetics to track malaria transmission
  5. Evolution of antimalarial resistance

Representative Publications

  • Lo EYY, Russo G, Pestana K, Kepple D, Abagero BR, Dongho GBD, Gunalan K, Miller LH, Hamid MM, Yewhalaw D, Paganotti G. (2021) Contrasting epidemiology and genetic variation of Plasmodium vivax infecting Duffy negatives across Africa. International Journal of Infectious Diseases 108:63-71. doi:10.1016/j.ijid.2021.05.009
  • Kepple D, Hubbard A, Musab MA, Abagero BR, Lopez K, Pestana K, Janies DA, Yan G, Hamid MA, Yewhalaw D, Lo EYY. (2021) Plasmodium vivax from Duffy-negative and Duffy-positive individuals shared similar gene pool indicative of frequent transmission in East Africa.  Journal of Infectious Diseases doi.org/10.1093/infdis/jia063  
  • Ford A, Kepple D, Abagero BR, Pearson R, Auburn S, Gunalan K, Miller LH, Janies DA, Yewhalaw D, Rayner JC, Yan G, Lo EYY.  (2020) Whole Genome Sequencing of Plasmodium vivax Isolates Reveals Frequent Sequence and Structural Polymorphisms in Erythrocyte Binding Genes. PLoS Neglected Tropical Diseases 14:e0008234.   doi.org/10.1371/journal.pone.0238186
  • Dieng CC, Gonzalez L, Pestana K, Dhikrullahi SB, Amoah LE, Afrane YA, Lo EYY. (2019) Contrasting asymptomatic and drug resistance gene prevalence of Plasmodium falciparum in Ghana: implications on Seasonal Malaria Chemoprevention. Genes 10:538. doi:10.3390/genes10070538
  • Gunalan K*Lo EYY*, Hostetler J, Yewhalaw D, Mu J, Nesfsey D, Yan G, Miller LH. (2016) The role of Plasmodium vivax Duffy binding protein 1 in invasion of Duffy null Africans. Proceedings of National Academy of Sciences 113:6271-6. doi.org/10.1073/pnas.1606113113 

*Co-first authors

For more about Dr. Marriott's lab, visit his website (https://biology.charlotte.edu/directory/ian-marriott-phd)

Research projects

  1. The ability of the neuropeptide substance P to exacerbate detrimental inflammation following infection.
  2. The mechanisms underlying brain cell responses to bacterial and viral infection.
  3. The role of resident bone cells in inflammatory damage in osteomyelitis
  4. The initiation of brain cell immune responses to DNA damage.

Representative Publications

  • Jeffries, A., Nikita, Truman, A.W., and Marriott, I.  (2020).  The intracellular DNA sensors cGAS and IFI16 do not mediate effective immune responses to HSV-1 in human microglial cells.  J. Neurovirol.  26: 544-555.  PMID 32488842.
  • Johnson, M.B., Halman, J.R., Burmeister, A.R., Currin, S., Khisamutdinov, E.F., Afonin, K.A., and Marriott, I.  (2020).  Retinoic acid inducible gene-I mediated detection of bacterial nucleic acids in human microglial cells.  J. Neuroinflamm.  17: 139. PMID: 32357908.
  • Jeffries, A.M., and Marriott, I. (2020).  Cytosolic DNA sensors and CNS responses to viral pathogens.  Front. Cell. Infect. Microbiol. 10: 501. PMID: 33042875
  • Burmeister, A.R., Johnson, M.B., Yaemongkol, J.J., and Marriott, I.  (2019).  Murine astrocytes produce IL-24 and are susceptible to the immunosuppressive effects of this cytokine. J. Neuroinflamm. 16: 55. PMID: 30825881
  • Martinez, A.N., Burmeister, A.R., Ramesh, G., Doyle-Meyers, L., Marriott, I., and Philipp, M.T.  (2017).   Aprepitant limits in vivo neuroinflammatory responses in a rhesus model of Lyme neuroborreliosis.  J. Neuroinflamm. 14: 37.  PMID: 28202084
Research Projects and Representative Publications forthcoming
Research Projects and Representative Publications forthcoming

Research Projects

  1. Understanding molecular mechanisms of soybean cyst nematode resistance,
  2. Dissecting the genetics basis and evolution of phytochemical diversity in natural populations
  3. Plant environmental adaptation and multiple stress response integrating omics and systems biology

Representative Publications

  • Zhang H, Yasmin F#,  Song B-H*. Neglected treasure in the wild – Legume wild relatives in food security and human health. Current Opinion in Plant Biology. 2019. 49: 17-26  https://doi.org/10.1016/j.pbi.2019.04.004. (#Graduate Student)
  • Luo Y&, Reid R&, Freese D#, Li C, Watkins J, Shi H, Zhang H, Loraine A*, and Song B-H*. Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. 2017, Scientific Reports. 2017 Aug 29;7(1):9624. doi: 10.1038/s41598-017-09241-x. PubMed PMID: 28852001; PubMed Central PMCID: PMC5575116. (& Co-first Author) (#Graduate Student) 
  • Zhang H, Li C, Davis EL, Wang J, Griffin JD. kofsky J#, and Song B-H*.  Genome-Wide Association Analysis of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja). 2016 Frontiers in Plant Science. 7:1214.doi: 10.3389/fpls.2016.01214 (#Graduate Student
  • Leamy JL, Lee C-R, Song Q, Mujacic I#, Luo Y, Chen CY, Li C, Kjemtrup S, and Song B-H*. Environmental versus geographical effects on genomic variation in wild soybean (Glycine soja) across its native range in Northeast Asia. 2016. Ecology and Evolution. DOI: 10.1002/ece3.2351 (#Undergraduate Student)
  • Prasad, KVS&, Song B-H&, Olson-Manning C&, Anderson JT, LeeC-R,  Schranz ME, Windsor AJ, Clauss MJ,  Manzaneda AJ, Naqvi I, Reichelt M,  Gershenzon J, Rupasinghe SG, Schuler V, Mitchell-Olds T, A novel gain-of-function polymorphism controlling complex traits and fitness in nature. Science (& Co-first Author). 2012, 337-1081-1084

For more information about the Steck lab, visit: https://pages.charlotte.edu/todd-steck/

Research projects

  1. Identifying antibiotic collateral sensitivity networks in Burkholderia species. 
  2. Developing antibiotic treatment options for chronic infections using collateral sensitivity as a guide.  
  3. Determining the effects of antibiotics on the lung microbiome in cystic fibrosis.
  4. Characterizing in vivo evolution of bacteria in the human lung

Representative Publications

  • Kavanaugh, L., Harrison S., Flanagan, J. N. and Steck, T.R. 2021. Antibiotic cycling reverts extensive drug resistant Burkholderia multivorans. Antimicrobial Agents and Chemotherapy. Jun 7:AAC0061121. DOI:10.1128/AAC.00611-21. 
  • Kavanaugh, L., Flanagan, J. N. and Steck, T.R. 2020. Reciprocal antibiotic collateral sensitivity in Burkholderia multivorans. International Journal of Antimicrobial Agents. 56(1): Epub: 2020 April 24. DOI: 10.1016/j.ijantimicag.2020.105994.
  • Flanagan, J. N., Kavanaugh, L. and Steck, T.R. 2019. Burkholderia multivorans Exhibits antibiotic collateral sensitivity. Microbial Drug Resistance. DOI:10.1089/mdr.2019.0202.
  • Stokell, J.R., Hamp, T., and Steck, T.R. 2016. Examining changes in bacterial abundance in complex communities using next-generation sequencing is enhanced with quantitative PCR. Antonie van Leeuwenhoek. 109(8):1161-1166. DOI: 10.1007/s10482-016-0707-4.
  • Stokell, J.R., Gharaibeh, R.Z., Hamp, T.J. Zapata, M.J., Fodor, A.A., and Steck, T.R. 2015. Analysis of Changes in Diversity and Abundance of the Microbial Community in a Cystic Fibrosis Patient over a Multiyear Period. J. Clin. Microbiol. 53(1): 237-247. DOI: 10.1128/JCM.02555-14
Research Projects and Representative Publications forthcoming

The Truman Lab (www.trumanlab.org) uses a variety of molecular technologies including CRISPR and mass spectrometry to understand the roles of molecular chaperones in health and disease.

Research projects

  1. The role of post-translational modifications on Hsp70 in the pathogenic yeast candida albicans 
  2. The impact of viral infection on the Chaperone Code
  3. The importance of the Chaperone Code on the immune system
  4. Understanding the role of Hsp70 co-chaperone proteins in anticancer drug resistance

Representative publications

  • Rigo MM, Borges TJ, Lang BJ, Murshid A, Nitika, Wolfgeher D, Calderwood SK, Truman AW, Bonorino C. Host expression system modulates recombinant Hsp70 activity through post-translational modifications. FEBS J. 2020. Epub 2020/03/08. doi: 10.1111/febs.15279. PubMed PMID: 32144867; PMCID: PMC7483562.
  • Weissman Z, Pinsky M, Wolfgeher DJ, Kron SJ, Truman AW, Kornitzer D. Genetic analysis of Hsp70 phosphorylation sites reveals a role in Candida albicans cell and colony morphogenesis. Biochim Biophys Acta Proteins Proteom. 2020;1868(3):140135. Epub 2020/01/23. doi: 10.1016/j.bbapap.2018.09.001. PubMed PMID: 31964485.
  • Nitika, Blackman JS, Knighton LE, Takakuwa JE, Calderwood SK, Truman AW. Chemogenomic screening identifies the Hsp70 co-chaperone DNAJA1 as a hub for anticancer drug resistance. Sci Rep. 2020;10(1):13831. Epub 2020/08/17. doi: 10.1038/s41598-020-70764-x. PubMed PMID: 32796891; PMCID: PMC7429498.
  • Sluder IT, Nitika, Knighton LE, Truman AW. The Hsp70 co-chaperone Ydj1/HDJ2 regulates ribonucleotide reductase activity. PLoS Genet. 2018;14(11):e1007462. Epub 2018/11/20. doi: 10.1371/journal.pgen.1007462. PubMed PMID: 30452489; PMCID: PMC6277125.
  • Truman AW, Kristjansdottir K, Wolfgeher D, Hasin N, Polier S, Zhang H, Perrett S, Prodromou C, Jones GW, Kron SJ. CDK-dependent Hsp70 Phosphorylation controls G1 cyclin abundance and cell-cycle progression. Cell. 2012;151(6):1308-18. Epub 2012/12/12. doi: 10.1016/j.cell.2012.10.051. PubMed PMID: 23217712; PMCID: PMC3778871.

For more about Dr. Xiang's lab, visit the lab website (https://pages.charlotte.edu/txiang/)

Research projects

  1. Our laboratory is interested in answering fundamental questions about the biology of host-microbe symbiosis. In particular, we apply systems biology (metabolomics, transcriptomics, genomics), cell biology, and genetic approaches to understand coral-algal symbiosis.
  2. We develop and utilize functional genomics tools to uncover the molecular components necessarily for the establishment and maintenance of coral-algal symbiosis.

Representative Publications

  • Marinov GK1, Trevino AE1, Xiang T1, Kundaje A, Grossman AR, Greenleaf WJ. (2021) Transcription-dependent domain-scale three-dimensional genome organization in dinoflagellates. Nature Genetics, 53, 613-617. (1equal contribution)
  • Kirk AL#, Clowez S, Lin F, Grossman AR, Xiang T* (2020) Transcriptome reprogramming of Symbiodiniaceae Breviolum minutum in response to organic nutrients amino acids supplementation. Frontiers in Physiology, 11:574654. (#graduate student in UNC Charlotte, *corresponding author)
  • Xiang T*, Jinkerson RE, Clowez S, Tran C, Krediet CJ, Onishi M, Pringle JR and Grossman AR (2018) Glucose-induced trophic shift in an endosymbiont dinoflagellate with physiological and molecular consequences. Plant Physiology, 176: 1793-1807. (*corresponding author) 
  • Xiang T*, Lehnert E, Jinkerson RE, Clowez S, Kim R, DeNofrio JC, Pringle JR and Grossman AR (2020) Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations. Nature Communications, 11:108. (*corresponding author)
  • Xiang T*, Nelson W, Rodriguez J, Tolleter D and Grossman AR (2015) Symbiodinium transcriptome and global responses of cells to immediate changes in light intensity when grown under autotrophic or mixotrophic conditions. The Plant Journal, 82: 67-80

For more about Dr. Yan's lab, visit his research lab website: https://pages.charlotte.edu/shan-yan/ 

Research projects

  1. DNA Single-strand break repair and signaling
  2. Oxidative stress response and redox regulation
  3. DNA replication stress response in genome stability
  4. DNA repair and DNA damage response pathways in human diseases (cancer, sepsis, aging, and neurodegenerative diseases)

Representative Publications

  • Lin Y, Raj J, Li J, Ha A, Hossain MA, Richardson C, Mukherjee P, Yan S*. 2019. APE1 senses DNA single-strand breaks for repair and signaling. Nucleic Acids Research. 48 (4):1925-1940 (PMCID: PMC7038996; PMID: 31828326)
  • Lin Y, Bai L, Cupello S, Hossain MA, Deem B, McLeod M, Raj J, Yan S*. 2018. APE2 promotes DNA damage response pathway from a single-strand break. Nucleic Acids Research. 46 (5): 2479-2494. (PMCID: PMC5861430; PMID: 29361157)
  • Wallace BD, Berman Z, Mueller GA, Lin Y, Chang T, Andres SN, Wojtaszek JL, DeRose EF, Appel CD, London RE, Yan S*, Williams RS*. 2017.  APE2 Zf-GRF facilitates 3′-5′ resection of DNA damage following oxidative stress. Proceedings of the National Academy of Sciences of the United States of America. 114 (2):304-309. (PMCID: PMC5240719; PMID: 28028224)
  • Yan S*, Sorrell M, Berman Z. 2014. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cellular and Molecular Life Sciences. 71 (20): 3951-3967. (PMCID: PMC4176976; PMID: 24947324)
  • Willis J, Patel Y, Lentz B,  Yan S*. 2013. APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America. 110 (26): 10592-10597. (PMCID: PMC3696815; PMID: 23754435)